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Abstract
Rowhammer is a hardware vulnerability present in nearly
all computer memory, allowing attackers to modify bits in
memory without directly accessing them. While Rowhammer
has been extensively studied on client and even mobile
platforms, no successful Rowhammer attack has been
demonstrated on server platforms using DDR4 ECC memory.

Tackling this challenge, in this paper we demonstrate the
first end-to-end Rowhammer technique effective against Intel
servers using Hynix DDR4 ECC memory. To that aim, we first
characterize the Hynix implementation of Target Row Refresh
(TRR) on server parts, demonstrating effective hammering
patterns on both FPGA and Intel-based testing platforms
with ECC disabled. We then reverse engineer Intel’s ECC
implementation on Skylake and Cascade Lake servers. We
find that it has a coding distance of four, which often allows
triggering incorrect ECC correction with just two bit flips.

Combining the two observations, we present an end-to-end
Rowhammer attack which can flip bits on Intel servers, with-
out causing crashes. Finally, we demonstrate the effectiveness
of our attack by hammering RSA public keys loaded into
memory, causing the server to accept messages not signed by
the original key.

1 Introduction

Rowhammer is a security vulnerability present in nearly all
modern computer memory [35], allowing attackers to modify
the code and data of a victim program without directly ac-
cessing it. At a high level, by executing a specific sequence of
memory accesses to their own address space, an attacker can
drain the charge stored in memory cells located in geometri-
cally adjacent rows, thereby causing bit flips across isolation
boundaries. Known as Rowhammering, this cross-row dis-
turbance effect has been used effectively by adversaries to
violate numerous security properties [4, 14, 15, 16, 17, 20, 32,
39, 43, 52, 54, 62, 64], such obtaining root privileges [15],
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breaking cryptographic implementations [16, 39, 54], and
even mounting browser-based exploits [4, 14, 17, 20, 32].

Starting from a humble origin of being a reliability issue in
DDR3 laptop memory [35], Rowhammer attacks have been
demonstrated against a large variety of computing hardware,
including standard DDR3 DIMMs [17, 19, 39] on PCs as well
as mobile LPDDR3 memory [66]. The advent of Targeted
Row Refresh (TRR) countermeasures in DDR4 memory has
led to the development of fuzzer-assisted TRR bypasses [18,
27, 28], with Rowhammer-induced bit flips demonstrated on
DDR4 DIMMs as well as on mobile devices equipped with
LPDDR4 memory [36]. Finally, Rowhammer has been re-
cently demonstrated on some Samsung DDR5 memory mod-
ules, albeit without a systematic characterization [28].

While Rowhammer attacks have been extensively studied
on PC and mobile platforms, much less is known about
the vulnerability of server-grade memory to Rowhammer-
induced bit flips. Indeed, server DIMMs contain an additional
layer of bit flip protection, in the form of dedicated chips
storing check bits for Error Correcting Codes (ECC), which
aim to detect and correct memory errors. With Rowhammer
attacks on ECC-equipped server memory only described on
outdated DDR3-based platforms without TRR-based mitiga-
tions [11, 39], in this paper we ask the following questions:

Are DDR4-based server platforms vulnerable to Rowham-
mer attacks? What would it take to craft such attacks and how
can we best defend against them?

1.1 Our Contributions
In this paper we demonstrate to the best of our knowledge
the first end-to-end Rowhammer induced bit flips on DDR4
servers in default BIOS settings, with all ECC mechanisms
enabled. We then use our Rowhammer technique to mount
fault attacks on RSA public keys used for signature verifi-
cation, resulting in the server accepting RSA signatures that
are not signed by the original key.
Characterizing Rowhammer on DDR4 ECC DIMMs. We
begin our investigation by characterizing the vulnerability of



DDR4 Registered DIMMs with ECC memory to Rowhammer.
We perform Rowhammer analysis across 30 server-grade
Hynix ECC RDIMMs made between 2017 and 2022, using
both an FPGA-based memory controller implementation and
an Intel server equipped with a custom UEFI BIOS, which
disables ECC and data scrambling. While the precise location
of flippy bits varies across DIMMs and cannot be controlled
by the attacker (thus requiring individual DIMM-level
characterization), we find that we can induce bit flips in all
30 DIMMs using FPGAs, with 24 of them being vulnerable
to hammering on server platforms.
Reverse Engineering Intel’s ECC and Scrambling Imple-
mentation. Next, we proceed to reverse engineer the error
correcting and data scrambling mechanisms of Intel platforms.
To that aim, we use a Logic Analyzer (LA) to snoop traffic on
the DDR4 bus. Here, we document for the first time Intel’s
ECC implementation, supporting Single-Device Data Correc-
tion (SDDC) capabilities. We find that Intel elected to use a
distance-4 ECC code on Skylake and Cascade Lake platforms.
In such codes, a four bit flip is enough for an undetectable
ECC bypass, whereas two bit flips are sufficient to trigger in-
correct ECC correction. Both these cases result in observable
Rowhammer-induced bit flips on the target machine. Finally,
we find that Intel’s data scrambling implementation appears
to be deterministic, XORing the same scrambling string into
the data across boots and even machines.
End-to-End Rowhammer Attacks on Server Platforms. Fi-
nally, we combine our hammering technique with our knowl-
edge of Intel’s ECC and scrambling implementation, present-
ing the first end-to-end Rowhammer attack on Intel servers in
default BIOS configurations with their ECC and scrambling
mechanisms enabled. As Intel machines crash when an uncor-
rectable bit flip is detected, we develop a novel approach for
profiling memory for bits flippable via Rowhammer without
inducing crashes. Combining our templating technique with
improved hammering patterns designed to target Hynix’s
TRR implementation, we achieve architecturally visible bit
flips without inducing crashes within about 2.5 hours. Finally,
we use our ability to induce bit flips to hammer RSA signature
public keys stored in the server’s memory, resulting in the
server accepting signatures not signed by the original key.
Summary of Contribution. We contribute the following:
• We characterize Rowhammer across 30 Hynix ECC server

DIMMs using both FPGA and server platforms (Section 4).
• We reverse engineer Intel’s ECC and data scrambling mech-

anisms in Skylake and Cascade Lake platforms (Section 5).
• We present end-to-end Rowhammer flips on Intel servers

using default settings, without inducing crashes (Section 6).

1.2 Responsible Disclosure
We shared our findings with the Intel Security Team in Jan-
uary 2025 and subsequently discussed our findings over email
and video calls. We have also notified ASRock regarding the

ability to disable ECC via custom BIOS firmware in April
2025. Both vendors considered the issue to be out of scope.

2 Background

2.1 Memory Organization and Addressing

DRAM Organization. Modern DRAM systems consist
of several hierarchical structures: channels, DIMMs, ranks,
chips and banks, aiming to maximize the system’s memory
level parallelism. A DRAM channel is the set of traces
between the memory controller and the DIMM physically
connected to one of the channel’s slots in the motherboard.
Different channels can be accessed in parallel, allowing for
simultaneous access to DIMMs placed in different channel
slots. Within a DIMM, ranks are used to allow parallel access
to different chips in the same module. There can be 1 or 2
ranks, each consisting multiple chips. See Figure 1 (left).
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Figure 1: (left) Typical Memory System Organization. (right) Server
RDIMMs with x4 Chips and x8 Chips.

Registered DIMM and Server Platform. DDR4 Registered
DIMMs (RDIMM) are commonly used in server platforms,
where the data bus between the memory controller and
DIMM is expanded from 64-bits to 72-bits for transmitting
checkbits. To align with the memory controller’s data bus
interface, each rank includes a sufficient number of chips for a
72-bit wide data bus, e.g., eighteen x4 chips, or nine x8 chips.
Figure 1 (right) shows two RDIMMs with x4 and x8 chips.
Chip Layout. In the case of DDR4, each chip is organized
into 4 bank groups, which are in turn composed of rows, typi-
cally 8KB in size. These rows are made up of individual cells,
which are the smallest units in DRAM. Each DRAM cell con-
sists of a single transistor and a capacitor, which together store
a single bit of data. When a row is to be accessed in a bank,
the memory controller issues an activate command to activate
the wordline of the row which allows sense amplifiers to be
connected with the cells in the row. This process loads the ac-
cessed row to the row buffer which is a per bank and cache like
structure in DRAM to enable fast access to an activated row.
DRAM Addressing. To map the physical address space
to DRAM locations, the CPU uses proprietary addressing
functions. Next, as Rowhammer is a spatial attack between
neighboring rows, before mounting Rowhammer, an attacker
must recover the platform’s DRAM addressing functions.
Previous works [28, 52] have tackled the problem on both
Intel and AMD’s consumer platforms. Specifically, there are
three parts that need recovering: bank addressing functions,



row bits, and column bits. For bank addressing functions,
previous works either use physical probing or bank conflict
timing side-channels. On Intel’s consumer platforms, bank
functions are linear functions of XORing physical address
bits while row and column bits are directly mapped from top
bits and bottom bits, respectively, of physical addresses.

For Skylake and Cascade Lake servers we have found that
Intel provided the addressing functions in the Linux’s Error
Detection and Correction (EDAC) source code [42], allowing
the kernel to translate physical addresses to DRAM locations
for accurate error logging and reporting. Figure 2 gives an
example of addressing functions on Skylake and Cascade
Lake CPUs with single rank DIMMs. Compared to recovered
addressing functions on Intel’s consumer platforms [28, 52],
the bits used in DRAM row addressing are not in order, but
mixed. Specifically, the first four row bits (R3...R0) are taken
from physical address bits 20, 16, 15, 14 in order, while the
next row bit R4 is not taken from physical address bit 21,
but from bit 28. DRAM bank and column functions of both
consumer and server platforms are alike.
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Figure 2: DRAM Addressing Functions on Intel Skylake and Cascade Lake
CPUs with Single Rank DIMMs

2.2 Rowhammer
As the technology node size shrinks, cells in DRAM have be-
come more prone to parasitic electrical interaction and passing
gate effects from cells in nearby rows. Kim et al. [35] termed
this electrical phenomena Rowhammer and showed that by
performing a rapid series of activations to two aggressor rows,
the bits stored in a victim DRAM row sandwiched between
them can be flipped without accessing it. Weaponizing this
effect, Rowhammer has been used for numerous attacks on
computing systems, including client machines [15, 16, 32,
39, 43, 52, 54, 62, 64], web browsers [4, 14, 17, 20, 32],
mobile [36, 66] and even DDR3-based servers [11].
TRR Mitigation. To mitigate Rowhammer on DDR4
memory, DRAM manufacturers [34, 41, 47] and CPU
vendors [61] introduced Target Row Refresh (TRR) (either
in DRAM or in the memory controller), which makes use of
DRAM refresh commands to preventatively refresh potential
victim rows before flips occur. Specifically, the DDR4
standard requires the memory controller to issue refresh
commands every 7.8µs to let the DRAM refresh a certain
number of rows and allow TRR to recharge potential victim
rows. At a high level, a TRR mechanism can be abstracted
into two phases: tracking phase and mitigating phase. In
the tracking phase, TRR logic keeps track of potential

Rowhammer aggressor rows by monitoring row activation
commands. When the DRAM receives a refresh command,
it switches to mitigating phase, allowing the TRR mechanism
to decide whether to mitigatively refresh potential victim
rows. However, these mitigations neither solve the root
cause of the problem nor prevent exploitation by carefully
crafted Rowhammer attack patterns [18, 27] or by a recently
discovered electrical phenomenon known as Rowpress [45].
TRR Analysis with SoftMC. With the presence of TRR mit-
igation, Rowhammer attacks on DDR4 need to create access
patterns that can successfully bypass its protection. While
researchers have shown it is possible to observe and bypass
the TRR mechanism on real systems [18, 27, 28, 32], recent
work [23] introduced methods of directly reverse engineering
in-DRAM TRR implementations in all major DRAM vendors.
This is built on an FPGA-based software memory controller
(SoftMC) [49], which provides the capability of precise
control of commands sent to the memory module. Recovering
vendor proprietary TRR implementations enables attackers
to craft custom Rowhammer patterns that either bypass
previously secure TRR implementations or produce more bit
flips on TRR implementations with known effective patterns.
Rowhammer Attacks on ECC RAM. ECCPloit [11] first
successfully attacked ECC implemented on DDR3 servers by
reverse engineering ECC through various fault injection meth-
ods and cold boot attacks. This was then followed up by RAM-
Bleed [39], which demonstrated how Rowhammer can be used
for reading data from victim memory, including bits corrected
by DDR3 ECC. While end-to-end attacks on servers using
DDR4 ECC memory have not yet been demonstrated, some
prior work was able to achieve bit flips on DDR4 RDIMMs by
disabling refreshes using custom DIMM fault injectors [10]
or on Broadwell servers [60], both with ECC disabled.

2.3 ECC and Data Scrambling in DRAM

ECC Implementations. Error correcting codes (ECC) are
used to address memory errors caused by many factors rang-
ing from cosmic rays to disturbance errors. Implementation
of the ECC differs as the system requirements change. For
low-end systems, ECC is implemented in-band, referring
to the fact that the generated ECC bits are stored within the
same memory as the data. This incurs a performance penalty
as operations to read or write ECC bits to the same memory
space do not happen in parallel. On higher-end systems (e.g.,
servers and workstations), ECC is implemented in a side-band
manner, meaning that ECC bits are written to and read from
a dedicated chip on the DIMM intended solely for ECC
use. ECC computation and checks are done in parallel with
normal data reads, with the help of additional data lines on the
memory bus reserved for ECC data transfer. Thus, when the
CPU wants to write data to the DRAM, its memory controller
calculates the parity bits according to the underlying ECC
algorithm and writes the resulting codeword to the DRAM.



A final method is on-die, which is implemented by memory
vendors due to DRAM scaling challenges and is completely
encapsulated within the DRAM chip [51]. This type of ECC
is common on LPDDR4 and DDR5 memory, enhancing
production yield by silently correcting errors.
Data Scrambling. Rapid changes in current can cause voltage
fluctuations due to inductance present on bus circuitry. The
memory bus, being high speed and handling non-uniform traf-
fic often containing long sequences of 0s and 1s, is particularly
susceptible to this, resulting in excessive voltage and current
fluctuations. To mitigate this, memory controllers often imple-
ment data scrambling features, which disrupt long consecutive
sequences of 0s and 1s by XORing pseudorandom patterns
to data writes (and XORing them again during reads) [12].

3 Threat Model

In this paper we focus on Intel server platforms and Hynix
DDR4 ECC RDIMM modules. We assume a typical
Rowhammer model where the attacker has unprivileged code
execution on the target machine. Next, for the attacks de-
scribed in Section 6, we assume that the machine runs Linux,
with all side-channel countermeasures both in BIOS and in
the OS left in their default state. In particular, this includes
the machine’s ECC settings, which will crash the machine
in the case where an uncorrectable bit flip is detected.

4 Observing Rowhammer on ECC DIMMs

In this section we characterize the vulnerability of DDR4
ECC DIMMs to Rowhammer bit flips, using both an
FPGA-based memory controller and a Cascade Lake server.

For FPGA-based Rowhammer testing, we use a Xilinx
Alveo U200 FPGA card, running the SoftMC memory con-
troller implementation [49]. Next, for mounting Rowhammer
on server platforms, we use a machine equipped with an AS-
Rock EPC621D8A motherboard and an Intel Xeon W-3235
(Cascade Lake) CPU (unless stated otherwise). For memory,
we use Hynix Registered DDR4 ECC memory, with exact
part numbers specified in Table 1. Finally, our motherboard
uses BMC controller firmware 01.60.00, and BIOS version
2.10, which we modify as outlined in Section 4.2.

4.1 FPGA-Based TRR Analysis
To reverse engineer TRR implementations across different
memory modules, we follow the methodology of U-TRR [23].
Selecting Rowhammer Rows. We recall that the DDR4 TRR
mechanism prevents Rowhammer-induced bit flips by deliber-
ately recharging potential victim rows during DRAM refresh
commands. Thus, by observing whether TRR is triggered in
each refresh command and which rows are targeted for refresh-
ing, we are able to recover the DIMM’s TRR implementation.

FPGA Board

DRAM Module

Figure 3: FPGA-based SoftMC Setup

At a high level, we use the following procedure for TRR re-
verse engineering. First, we modify the FPGA-based memory
controller to not issue any DIMM refresh commands. We
then test each row for its data retention time, i.e., the minimal
time needed for it to have data errors due to lack of refreshes.
After finding rows whose retention time is stable and does not
vary across multiple tests, we use those rows as Rowhammer
victims and nearby rows as Rowhammer aggressors.
TRR Reverse Engineering. We can now test if a given
Rowhammer pattern triggers the DIMM’s TRR implemen-
tation to refresh the victim. First, we write data to the victim
rows and wait for half of its retention time. Then, we access
the aggressor and dummy rows as per the pattern being tested,
followed by a single DIMM refresh command. Finally, we
wait for the rest of the retention time of the victim’s row, and
subsequently check it for bit flips. If the victim row does not
have bit flips, we can deduce that TRR happened in the refresh
commands issued during the pattern and targeted the victim
rows. On the other hand, if the victim row does exhibit bit flips
due to retention error, we are able to deduce that the DIMM’s
TRR mechanism decided not to issue any mitigative refreshes
at the refresh command, or the access pattern confused TRR
to refresh another row thereby successfully bypassing it.
Experimental Results. Using the method described above,
we reverse engineer mechanisms of both the tracking phase
and mitigating phase in different Hynix DIMMs. Figure 3
shows the hardware setup of the FPGA-based SoftMC
platform, with Table 1 summarizing our findings.
High-Level TRR Implementation. Our experiments show
that the DIMMs tested use 3 different TRR implementations
with several high-level characteristics in common. The aggres-
sor detection method describes how TRR logic keeps track
of potential Rowhammer aggressor rows. Prior work has pro-
posed three models to describe different detection methods:
counter-based, sampling-based, and the mix of the two [23].
Counter-based detection keeps track of activation counts of a
certain number of rows in a counter table and uses the counter
values to select mitigation targets. Sampling-based detection
probabilistically makes a decision on whether to track the
row in every activation command, and thus usually tracks
only one aggressor row. Mixed detection uses both counter
tables and probabilistic sampling to track aggressor rows.

We found that all Hynix DIMMs tested use sampling-based
TRR mechanisms, with each DRAM bank having its own
individual TRR sampler. Moreover, Hynix’s TRR sampler
only seems to have the capacity to store a single aggressor,
which is sampled during the Rowhammer access pattern.



Tested DIMMs TRR Analysis Results FPGA Rowhammer Results Server RH

Module Part Number
Date
Code

TRR
Ratio

Nbr.
Ref.

F-to-N
Ref. Ratio

Biased
Sampl.

Row Ref.
Period

Max Act.
Per Ref.

Eff.
Patt.

Avg. Flips
Per Row

Avg.
HCfirst

PBS Avg.
Flips / Row

H0–H2 HMA451R7AFR8N-UH TD AC 17-21 1/4 2 - ✓ 3640 168 P1 183.7 66K 1.39
H3–H4 HMA451R7AFR8N-UH TD BC 18-01 1/4 2 - ✓ 3640 168 P1 227.6 62K 0.01
H5–H6 HMA451R7AFR8N-VK T3 AC 19-02 1/2 4 1/31 ✓ 4352 168 P1 873.9 35K 12.3
H7–H8 HMA42GR7BJR4N-UH TD AC 18-27 1/2 4 1/31 ✓ 4096 168 P1 1294.9 30K 20.8
H9–H10 HMA42GR7BJR4N-UH TD AA 18-29 1/2 4 1/31 ✓ 4096 168 P1 1246.6 31K 4.59
H11–H13 HMA41GR7BJR4N-UH TD AC 19-09 1/2 4 1/31 ✓ 4096 168 P1 1150.1 28K 2.24
H14–H16 HMA81GR7CJR8N-XN TG AC 19-31 1/2 4 1/31 ✓ 4352 170 P1 1029.3 34K 14.5
H17–H21 HMA81GR7CJR8N-XN TG AD 19-31 1/2 4 1/31 ✓ 4352 170 P1 1139.8 32K 19.8
H22 HMA81GR7CJR8N-XN TG AD 19-32 1/2 4 1/31 ✓ 4352 170 P1 1278.8 33K 32.4
H23 HMA81GR7CJR8N-XN TG AC 22-17 1/2 4 1/31 ✓ 4352 170 P1 945.4 40K 0.68
H24–H25 HMA81GR7CJR8N-XN TG AD 20-24 1/2 4 1/7 ✗ 3290 170 Q1 31.4 18K -
H26–H28 HMA81GR7CJR8N-XN TG AD 20-49 1/2 4 1/7 ✗ 3288 170 Q1 27.9 19K -
H29 HMA81GR7CJR8N-XN T4 AC 21-13 1/2 4 1/7 ✗ 3288 170 Q1 25.3 19K -

Table 1: TRR Analysis and Rowhammer Results. All tested DIMMs used a per-bank sampling TRR implementation, with a capacity for a single aggressor.

TRR-to-REF Ratio. TRR prevents bit flips by deliberately re-
freshing potential Rowhammer victims during DIMM refresh
commands. However, as TRR utilizes existing refresh com-
mands, the DIMM must still preserve the original command’s
functionality of refreshing each row at least once every 64ms.
Since the DIMM can only refresh a limited number of rows
during each command, not all refreshes are TRR-capable, i.e.,
able to refresh the victim row identified by the bank’s TRR.

On our Hynix DIMMs we observe that TRR-capable
refreshes occur deterministically once every fixed amount of
non-TRR refreshes. In Table 1 we refer to this as TRR Ratio,
with 1/4 (1/2) indicating that every 4 (2) refresh commands
there is one TRR-capable refresh command, respectively.
Number of Neighbor Rows Refreshed and Far-to-Near Re-
fresh Ratio. When the TRR mechanism identifies a DRAM
row as a potential aggressor, it needs to decide which victim
rows need to be refreshed to avoid Rowhammer-induced flips.

In our DIMMs, except for H0–H4, most TRR versions
refresh A±2 rows on each side of a sampled aggressor row A,
yielding a total of 4 neighboring rows refreshed. We further
analyze the behavior of refreshing near victims rows (A−1
and A + 1)—or “near-victim refreshes”—and far victim
rows (A−2 and A+2)—or “far-victim refreshes”. Here, we
observe that a single TRR-capable refresh command refreshes
either near or far victim rows, but never targets a mix of the
two. Moreover, we notice a fixed ratio between near-victim
refreshes and far-victim refreshes. For example, for DIMMs
H24–H29, one far-victim refresh happens after 7 near-victim
refreshes, yielding a far-to-near refresh ratio of 1/7.
Biased Sampling. Moving to analyzing how aggressor rows
are identified, we recall from above that Hynix’s sampling-
based TRR only keeps track of one single aggressor. Hence,
to have a high probability of correct aggressor detection, it
is crucial that the sampler samples the aggressor row address
uniformly during row activations. Here, biased sampling
occurs when rows in certain activations are more likely to
be identified as potential aggressors compared to others.

On our DIMMs, we observe that the aggressor samplers are
often biased towards the rows activated before a refresh com-

mand, commonly identifying those rows as potential aggres-
sors. This makes bypassing the sampling-based TRR simpler,
as the attacker can always hide the real aggressor row accesses
at the start of the Rowhammer pattern, far away from the re-
fresh commands. This has the effect of making the DIMM’s
TRR implementation incorrectly identify and refresh fodder
rows, while missing flips in the pattern’s targeted victim rows.
Regular Refresh Period. The DDR4 standard requires that
each row be refreshed at least once every 64 ms, i.e., once ev-
ery 8K refresh commands. With prior work [23] documenting
that DRAM chips internally refresh rows at a higher rate than
the DDR4 standard, we report on our DIMMs’ refresh period
in Table 1, likewise observing refreshes at a much higher rate.
Effective Rowhammer Attack Patterns. To obtain a bit
flip, an attacker must cause a sufficient amount of aggressor
row activations between two refresh commands targeting
the victim row (e.g., within the internal refresh period) while
simultaneously using dummy rows to prevent the DIMM’s
TRR mechanism from correctly detecting the aggressors and
refreshing the victim row. As discussed above, the TRR im-
plementations on our Hynix DIMMs probabilistically sample
one single aggressor from all incoming activations. For TRR
versions with biased sampling, to maximize the possibility
of the sampler detecting a dummy row, we hammer aggressor
rows at the start of the period between two refresh commands,
before transitioning to accessing the dummy rows in antic-
ipation of the refresh command and its associated aggressor
sampling. As each row access (hammering) requires a row
activation command, in Table 1 we also report the number
of activations between consecutive refresh commands for our
DIMMs, which we compute by dividing time of refresh inter-
val (tREFI) by row cycle time (tRC) for each DIMM module.

Thus, our first Rowhammer pattern (P1) consists of two ag-
gressor rows sandwiching a victim row and one dummy row
to bypass TRR. The pattern repeats at every refresh command,
regardless of whether it is TRR-capable or not, and lasts for
at least twice the DIMM’s regular refresh period. Between
two consecutive refresh commands, the number of accesses
to aggressor rows followed by dummy accesses is dependent



on the individual DIMM being tested. However, it is typically
the case that about 130–160 aggressor accesses followed by
5–30 dummy accesses, totaling to 170 memory accesses, are
sufficient for obtaining a considerable number of bit flips.

Next, as P1 heavily exploits Hynix’s biased TRR imple-
mentation, it does not yield any bit flips on DIMMs with
a non-biased TRR sampler (H24–H29). Instead, for these
DIMMs we exploit the fact that there is one far-victim refresh
after every 7 near-victim refreshes and that they never happen
simultaneously in a single TRR-capable refresh command.
As such, we define the pattern Q1 by only hammering ag-
gressors in the two "safe" refresh intervals right before every
far-victim refresh and hammering a dummy row in other time.
Average Amount of Flips and Hammer Count. Finally,
using the above hammering patterns, in Table 1 we summa-
rize the average amount of flips per 8KB row across all of
our tested DIMMs. Moreover, we note that the DIMM’s row
refresh period multiplied by the number of accesses between
two consecutive refresh commands sets an upper bound to
the number of activations an attacker can cause to aggressor
rows. Thus, in Table 1 for each DIMM we also report on
its Hammer Count (HC), which is the minimal number of
row activations required to trigger the first bit flip. As can
be seen, the HC required for inducing Rowhammer (∼50K
activations) is substantially lower than the DIMM’s internal
refreshing period (>500K activations), providing ample
opportunities for mounting Rowhammer attacks.

4.2 Disabling ECC and Data Scrambling
As we move from Rowhammer on FPGAs to attacking real
systems, we begin with disabling the ECC checking and data
scrambling mechanisms on these server machines. However,
we could not locate a motherboard for Intel Skylake or Cas-
cade Lake platforms where UEFI would let us control these
settings. Instead, we note a discrepancy between the UEFI set-
tings presented in the setup GUI of these motherboards, and
the actual settings available in the UEFI image. Exploiting
this fact, we developed a tool that parses a UEFI image file,
allowing us to inspect and modify settings not typically pre-
sented in the board’s setup GUI. We then flash these modified
images directly to the board’s SPI NOR flash chip, obtaining
greater control over the board’s configuration, allowing us to
enable/disable ECC and data scrambling. See Appendix A for
more details. Overall, we were able to obtain eight platforms
from three types (EVGA, ASRock, and Asus) with disabled
ECC and data scrambling, allowing us to evaluate the
susceptibility of ECC DDR4 DIMMs to Rowhammer attacks.

4.3 Improving Rowhammer for Server RAM
In this section, we move on to launching Rowhammer attacks
on our test platforms. We begin by testing existing DDR4
Rowhammer attacks and reporting their (in)effectiveness

in causing bit flips on server memory. We then analyze the
possible issues causing this, and proceed to present and
analyze our own improved Rowhammer techniques. For the
rest of this section, we use a test platform based on the AS-
Rock EPC621D8A motherboard and an Intel Xeon W-3235
(Cascade Lake) CPU, with ECC and data scrambling disabled.
Testing Existing DDR4 Rowhammer Techniques. We begin
our analysis by testing existing state of the art Rowhammer
techniques on (regular) DDR4, namely TRRespass [18]
and Blacksmith [27]. As these have targeted client devices,
we adapt them to use the server addressing functions from
Section 2.1 while leaving default values for other parameters.
We run TRRespass’s many sided hammering strategies, as
well as Blacksmith’s more general fuzzing tests on a single
DIMM for each part number reported in Table 1.

We observe that TRRespass did not cause any bit flips
on all DIMMs tested, even when using up to 32 sided
hammering. While Blacksmith fuzzing is able to find
effective patterns generating bit flips on DIMMs with the
first two TRR implementations (H5–H23), the most effective
hammering pattern it finds can only cause 32.4 bit flips
per row. This is significantly lower than our FPGA-based
analysis in Table 1 and is unlikely to be sufficient to bypass
the DIMMs’ ECC protections once enabled.

We make a few observations to explain these discrepancies.
First, we look at Blacksmith’s most effective pattern, PBS.
Similar to our pattern P1, it exploits the biased sampling and
also accesses dummy rows towards the end of refresh inter-
vals. We conjecture that TRRespass’ multi-sided hammering
approach is ineffective at bypassing Hynix’s TRR due to the
lack of refresh synchronization and its associated dummy
accesses, as both PBS and P1 are effective and agree on these
techniques. We also note that P1 on the FPGA platform is
able to cause considerably more bit flips (200-1000 per row)
compared to PBS (under 50 per row, rightmost column in
Table 1) on a server system. Given the seeming need for
using dummy accesses and refresh synchronization, we now
proceed to benchmark PBS for row activation throughput.
Row Activation Throughput Benchmarking. In addition
to executing specific Rowhammer patterns designed to
bypass TRR, an attacker also must ensure a high rate
of row activations, causing charge to drain from nearby
rows faster than they can be refreshed. Here, unlike prior
Rowhammer attacks [18, 35] which compiled manually
optimized hammering code, Blacksmith uses Just in Time
(JIT) compilation to dynamically generate it. To test the effect
of JIT compilation on row activation throughput we manually
implement Pmanual, a pattern similar to PBS, using the code
framework of [45]. We run both the JIT-compiled PBS and
the manual pattern Pmanual on 3 DIMMs from Table 1, one
for each speed. Table 2 presents a summary of our findings,
containing the results of our row activation throughput
benchmark, showing obtained activation counts in one refresh
interval (7.8µs) and standard row refresh period (64ms).



DIMM
Tested

Speed
(MT/s)

JITed Pattern Manual Pattern
# Act.
7.8µs

# Act.
64ms

# Act.
7.8µs

# Act.
64ms

H0 2400 57.0 468k 72.0 590k
H5 2666 67.0 550k 72.2 592k
H14 2933 67.6 554k 71.9 590k

Table 2: Average Activation Counts of JITed Hammering Pattern PBS and
Manually Optimized Hammering Pattern Pmanual.

Overall, it is clear that manually optimized patterns achieve
a 10.7% higher activation count than the JIT-compiled
pattern. Thus, in our setup, we conclude that manual pattern
optimization is still required to achieve a maximal row
activation account. Therefore, we manually implemented our
FPGA-based P1 pattern using native C++ code.
The Need for Refresh Synchronization. We recall from
Section 4.1 that our P1 pattern requires refresh synchro-
nization, so that aggressor rows are accessed only after
refresh commands followed by accesses to dummy rows
just before the next refresh is issued. While achieving
such tight synchronization is trivial on an FPGA-based
memory controller which is also responsible for issuing
refreshes, on server platforms our attack needs to properly
synchronize accesses to aggressor and dummy rows with
refresh commands issued by the CPU’s memory controller.
Obtaining Refresh Synchronization. Prior works [9, 27, 28]
achieved refresh synchronization by detecting refreshes
through memory access latency, where spikes indicate that
the DRAM access is delayed due to refreshes. Applying such
a strategy for P1 would involve timing memory accesses
using a high-precision rdtscp timer until a refresh command
is detected. Then, we hammer the aggressor rows followed
by accessing dummy rows for a duration of a single refresh
interval (about 70 accesses on our machines). Finally, we
perform additional memory accesses while measuring their
latency, re-synchronizing with the next refresh interval.

However, when attempting to apply the above strategy
to P1, we notice that accesses to aggressor rows take up
64 out of the 70 memory accesses available between two
consecutive refreshes. Thus, with nearly all accesses used for
hammering aggressors, there is little room left for accesses to
TRR-misleading dummy rows or accesses needed for refresh
synchronization. Moreover, spending little time on dummy
accesses and refresh synchronization increases the probability
of failure, as the nondeterminism introduced by the machine’s
execution might result in us not performing sufficient dummy
accesses, or missing the next refresh command altogether.
Either of these events will lead the DIMM’s TRR to correctly
detect our aggressor rows, issuing victim refreshes.
Improving Refresh Synchronization. Tackling this
challenge, we make two modifications to P1. First, we
notice that there is no difference between accessing dummy
rows for bypassing TRR and row accesses used for refresh
synchronization. In fact, we can combine these accesses, as
long as they do not overlap with aggressor addresses in the

same bank. Thus, we define the pattern P2 by removing the
accesses to dummy rows at the end of P1, and directly start
refresh synchronization after 64 aggressor accesses. This is
preferable as we now have about 6 memory accesses which
simultaneously perform both refresh synchronization and
dummy activation, giving P2 a higher probability in both
bypassing TRR and detecting the next refresh command.

Pattern Refining. To find the best balance between aggressor
row activations and room for TRR bypass and refresh syn-
chronization, we test different variations of P2 using our H21
DIMM with different aggressor access counts. We noticed
that the number of Rowhammer bit flips reaches maximum
with 46 accesses to aggressor rows, with the remaining 26
accesses simultaneously dedicated to TRR bypassing and re-
fresh synchronization. As such, we define this refined pattern
as P3, which we use going forward across our experiments.

4.4 Analyzing Data Patterns for Rowhammer

With our Rowhammer pattern P3 in hand, we now proceed
to evaluate its effectiveness using different data patterns.
While prior work [11, 18, 35, 39] has already observed that
Rowhammer is most effective when the aggressor and victim
rows have opposing data patterns (i.e., 1-0-1 arranged verti-
cally), in this section we proceed to evaluate our hammering
pattern across all eight possible 3-bit data patterns. To that
aim, we hammered 1024 rows on the H21 DIMM using P3,
following the methodology from Section 4.3.

Data Pattern
1
0
1

0
0
1

1
0
0

0
1
0

0
1
1

0
0
0

1
1
0

1
1
1

Avg. Flips Per Row 136 68 66 49 31 27 25 1.5

Table 3: Number of Bit Flips Observed With Different Data Pattern
Hammerings (Aggressor 1 Data - Victim Data - Aggressor 2 Data). All
DRAM timing parameters set to their default values.

As shown in Table 3, the most effective pattern is the one
widely recognized in prior works where both aggressor rows
are filled with 1s and the victim row with 0s, resulting in a 0→
1 flip in the victim. However, we also observe Rowhammer-
induced bit flips using “single sided” patterns where different
bit values are used in the two aggressor rows, including both
0→ 1 and 1→ 0 flips. Finally, we also notice Rowhammer
induced bit flips in the 0-0-0 and 1-1-1 pattern, where the
victim and both aggressors share the same bit values.

4.5 Observing Rowhammer on Server RAM

Having obtained an optimized Rowhammer pattern P3 and
an optimal data pattern, in this section we use our ASRock
server platform to survey the DIMMs from Table 1 for their
Rowhammer susceptibility. We sweep each DIMM for a
region of 1GB, corresponding to 8192 rows across 16 banks



for single rank DIMMs, or 4096 rows across 16 banks over
2 ranks for dual rank DIMMs. See Table 4.

DIMM
Tested

Avg. Flips
Per Row

DIMM
Tested

Avg. Flips
Per Row

H0–H2 1.73 H11–H13 100.3
H3–H4 1.78 H14–H16 100.4
H5–H6 84.8 H17–H21 131.7
H7–H8 130.3 H22 125.4
H9–H10 139.5 H23 94.4

Table 4: Rowhammer Survey Results. We leave DRAM timing parameters
set to their default values (tREFI≈7.8µs).

As shown, we are able to achieve more than 100 bit flips per
row on most DIMMs with our optimized Rowhammer pattern.
This corresponds to ×5−×10 improvement compared to the
patterns found by Blacksmith. Finally, we recall that experi-
ments in this section were conducted with the machine’s ECC
and scrambling features artificially disabled via a custom
BIOS image, which we investigate in the next section.

5 Reverse Engineering Server ECC

Having characterized the susceptibility of DDR4 ECC
DIMMs to flips, we now reverse-engineer the error correcting
and data scrambling mechanisms present on Cascade Lake
servers. We first provide basic coding theory background.

5.1 Coding Theory Background
In coding theory, block codes refer to codes which encode
data pieces of some fixed bit block length k. During encoding,
data is divided into blocks that are encoded individually
into a codeword of length n, providing error detection and
correction redundancy with extra r=n−k parity bits. Such
a code C is denoted as an (n,k) code and has a granularity
of a single bit. One important property is the minimum code
distance dmin, which is the minimum Hamming Distances
(HD) between any two codewords. A well-known example
of linear block codes is the Hamming (7,4) code [21] which
has a code distance dmin=3, meaning at least 3 bits need to
be flipped inside a codeword to get another codeword.
Encoding and Decoding in Linear Block Codes. For an (n,k)
block code operating over F2, its encoding function E :Fk

2→
Fn

2 takes a k-bit row vector u as input and maps it to an n-bit
row vector v as codeword output. Moreover, for linear codes,
the encoding operation can be defined as matrix multiplication
using the code’s generator matrix G of size k×n, i.e., E(u)=
u ·G. Finally, the set of all valid codewords C is defined by
the image of the generator matrix G, C={uG :u∈Fk

2}.
The decoding operation can be viewed as a three-step

process: parity checking, correction, and data decoding. For
the first step, a message m of n-bits is checked by the code’s
parity checking function P :Fn

2→Fr
2, yielding an r-bit vector

s, usually called the syndrome. Similar to the encoding
process, for linear codes the parity checking function can

be represented by FP(m) = H · mT = sT where H is the
parity checking matrix of size r × n. The parity checking
matrix guarantees that if s = 0r then the received message
m ∈ C, meaning that m is a valid codeword with no errors.
Alternatively, a non-zero syndrome s means that there is
error in the message m, requiring us to invoke the code’s
correction algorithm, resulting in an error-free codeword
m̂. In general, a code with distance dmin can detect dmin−1
errors and correct ⌊(dmin−1)/2⌋ errors. Finally, the message
is decoded back to its corresponding data vector u, using the
inverse function E−1 of E, that is E−1(m)=G−1 ·mT =uT .
Systematic vs. Non-Systematic Codes. A linear (n, k)
code is systematic if for any input k-bit vector u, the vector
formed by the first k bits of its corresponding codeword v
is equal to u. For systematic linear codes, this implies that
the generator matrix has a standard form G= [Ik|P], where
Ik is the k×k identity matrix and P is a matrix of size k×r.
Correspondingly, the code’s parity check matrix and data
coding matrices are H =

[
PT |Ir

]
and G−1 = [Ik|0], respec-

tively. For systematic linear codes, a codeword v=(u,p) can
be viewed as two parts: a data part u and a parity check part
p. This simplifies the data decoding procedure as taking the
first k bits of a codeword, allowing for parity checking (i.e.,
syndrome computation) to be done in parallel.
Concatenated Codes. Concatenated codes form a class of
error correction codes which are constructed by applying an
inner (n,k) code Cin on the outputs of an outer (N,K) code
Cout [21]. Thus, to encode a vector u with the concatenated
code Cout ◦Cin, the outer code Cout is first used to encode
u to a codeword v. Next, each symbol vi is encoded using
Cin, with their concatenation (Cin(v1),Cin(v2), ... ,Cin(vm))
being the output of the concatenated code Cout ◦Cin on the
input u. Finally, if Cout has minimum code distance Dmin and
Cin has dmin, the concatenated code is a (nN,kK) code with
minimum distance dmin ·Dmin [21].
ECC in Server DRAM. On server and workstation systems
ECC is implemented in a side-band manner, involving modifi-
cations to both the CPU and memory hardware. From the CPU
side, the memory controller is responsible for encoding and
decoding the data during DRAM read/write requests. On the
memory side, ECC capable memory modules typically con-
tain an extra chip for storing codewords (as opposed to data
values). Finally, the bus connecting CPU and memory is also
expanded to accommodate the extra data, growing from 64-bit
bursts for regular DDR4 DIMMs to 72-bits for ECC-equipped
DDR4 memory. The resilience guarantee of a system’s error
correction mechanism stems from the underlying error cor-
rection code, which is in turn designed based on certain data
corruption models. The most commonly known error correc-
tion and detection capability is Single Error Correction and
Double Error Detection (SEC-DED) [56]. Here, the memory
controller will be able to correct and report 1-bit errors and
forcefully "crash" the system when encountering 2 or more er-
rors. Another common DRAM failure mode is single-chip fail-



ure, where a single DRAM chip has multiple bit errors across
bursts or even completely fails. For high-availability systems,
vendors [26] have designed advanced ECC technologies that
enhance the memory system against single-chip failure, which
is beyond the capability of SEC-DED. Collectively known as
Single-Device Data Correction (SDDC), a common example
is Chipkill, which provides device failure protections.

5.2 Recovering Intel’s ECC Implementation
Focusing on DDR3-based servers, ECCPloit [11] was able
to recover the code’s generator matrix using the code’s
syndromes reported by the system’s BIOS or by using the
system’s data sheet. However, in our case we were unable
to find a DDR4 Intel system which reports syndromes used
for error correction or documentation regarding Intel’s ECC
implementation. Thus, we used a logic analyzer setup to
directly observe and recover the code’s generator matrix,
which we now describe.
Logic Analyzer Setup. Logic analyzers allow one to
capture logic signals from a digital circuit. We use a
Nexus Technology DDR4INTR288-BB-XL-A01 memory
interposer connected to a pair of Tektronix TLA7BB4 logic
analyzer modules, each capable of state speed of 1.4 GHz
and equipped with 64MB of RAM. The modules themselves
are housed in a TLA7016 chassis, which uses an interface
module to connect to a host PC via Ethernet. See Figure 4.
With DDR4 transmitting data on both rising and falling clock
edges, this setup is capable of observing DDR4 transactions
up to 2800 MT/s. Finally, our setup is based on equipment
acquired on the secondary market, totaling at around $3000.

Interposer
w/ DIMM

Target
MachineLogic Analyzer

Logic Analyzer
Controller Machine

Figure 4: Logic Analyzer and DDR4 Interposer Setup

Target Setup. We use a target machine equipped with an
EVGA SR-3 Dark motherboard and an Intel Xeon W-3235
(Cascade Lake) CPU. The motherboard was flashed with a
modified BIOS image (version 2.10) that disables DRAM data
scrambling, while leaving the ECC functionality enabled. We
limited the machine to 2666 MT/s, to stay below the maximal
acquisition speed supported by the logic analyzer. Finally, our
target machine was used with a Hynix HMA81GR7CJR8N–
XN TG AD DIMM placed inside the interposer.
Observing Bus Transactions. Figure 5 (top) shows an exam-
ple of acquired memory read transactions, as captured by our

logic analyzer, which is then parsed into a listing in Figure 5
(bottom). The logic analyzer allows us to observe a significant
amount of information regarding the CPU’s memory activity,
including memory commands, addresses, read/write data,
and, crucially, ECC check bits not accessible via software.

Read CMD
Read Data

Figure 5: Waveform View of Acquisition Data (top) and Parsed Listing View
of Acquisition Data (bottom)

Recovering the Code’s Size. We now proceed to find out the
size of the error correction code on the Intel Cascade Lake
platform. The DDR4 standard specifies the ratio of normal
data bits to redundancy bits as 8-to-1. Thus, recovering the
input data block size k is effectively recovering the code
size by n = k + r = k + k/8. Next, as each data block is
encoded individually and does not affect the checkbits of other
blocks, we can recover the value of k by changing the data
written to the cache line and examine consequent changes in
ECC checkbits via the logic analyzer. Using this method, we
observe that on DDR4 systems the ECC operates on the entire
cache line (i.e., k = 512 bits) with the code’s output being
n=576 bits long. Finally, we note that DDR4 ECC systems
seem to be using much wider codes compared to their DDR3
counterparts, with prior works investigating ECC on DDR3
systems [11, 39] reporting k=64 and n=72 bits, respectively.
Recovering the Code’s Generator and Parity Check
Matrix. Next, using our logic analyzer we can also recover
the code’s generator matrix G of size 512×576 bits. We do
this by performing 512 individual memory write operations,
where the ith operation has all data bits set to 0, with the
ith bit set to 1. As ECC encoding consists of multiplying
the message m by the generator matrix G, writing these data
patterns has the effect of setting the ECC bits during the ith
write transaction to be the ith row of G.

We use this method to recover the generator matrix G
used on Intel’s Skylake and Cascade Lake platforms. Finally,
we also recover the code’s parity check matrix H using
Section 5.1, and release both artifacts in Section 9.

5.3 Bypassing Error Correction Mechanisms
With both the generator and parity check matrices recovered,
we now analyze both the minimum code distance dmin of In-
tel’s ECC implementation and its data correction capabilities.



Obtaining Minimal Code Distance and Rowhammer
Implications. We begin by recalling that for linear codes,
the code distance dmin is equal to the minimum weight of
its non-zero codewords [21]. Moreover, a message of n bits
is a valid codeword if and only if it gives a zero syndrome,
namely the product of the parity check matrix H and its
transpose is a zero vector. Combining the above two facts,
we calculate all 576 bits data with all bits being zero and
only i bits set to one, for i = 1,2, ··· , stopping as soon as
a valid code word is found. While this process requires a
non-polynomial

(576
i

)
checks during its ith iteration, we were

able to find 1186 codewords with i= 4, which also sets the
minimal distance of Intel’s ECC implementation.

From the perspective of Rowhammer attacks, let mG be
a 576-bit code word corresponding to a 512-bit message m. If
an attacker is able to inject an error vector e into the machine’s
memory mG+e, the attack will remain undetected when the
value is read back by the processor if e is a valid code word
generated by G.1 Thus, we call the set of 1186 codewords of
weight 4 a 4-bit bypass template, as simultaneously flipping
these indices in a cache line via Rowhammer will result in an
attack undetectable to the machine’s ECC implementation.
Investigating Intel’s SDDC Capability. Beyond error
detection, we notice that Intel explicitly advertises that the
Cascade Lake Platform has x4 SDDC functionality, namely
the ability to correct errors resulting from the failure of a
single x4 DRAM chip. To investigate this functionality, we
first determine which bits in a cache line lie in the same x4
chip via the DDR4 RDIMM standard [29].

Then, we proceed to confirm the existence of x4 SDDC
on the Cascade Lake Platform. To that aim, we temporarily
disable the machine’s ECC (see Section 4.2) and profile
DIMM H21 for 64-byte cache lines which contain more
than 1 bit flip in the same x4 chip. We then enable ECC and
observe the machine’s behavior with only those bits flipped
using Rowhammer. With bit flips confirmed via the logic
analyzer, we find that the error correction mechanism can
correct more than one bit flip (tested up to 5) in a single x4
chip and will crash if there are flips across two or more chips.
Therefore, we conjecture that the ECC code on Cascade
Lake platforms is a concatenated code with an outer code for
detecting faulty chips and an inner code for error-correction.
Overall, the resulting code can correct all bit flips within a
single x4 chip and will crash if bit flips span across two or
more chips. Finally, we note that H21 used for testing in
fact uses eight x8 chips. However, while H21 appears as
a x8 DIMM in the system’s BIOS, we empirically confirm
that Intel’s ECC implementation appears to ignore this data,
treating H21 as a x4 DIMM composed of 16 chips.
Exploiting Error Correction for Bypassing ECC. We now
exploit the x4 SDDC correction capability to further loosen
the requirements of a successful Rowhammer bit flipping

1i.e., there exists e′ such that e=e′ ·G, implying that mG+e=(m+e′)G
with the CPU reading back m+e′ after decoding.

attack. We first analyze every 4-bit bypass template by count-
ing the number of chips where its bits lie. We find that there
are 334 4-bit bypass templates which span across two chips,
with 275 and 577 spanning three and four chips (respectively).
Focusing on 4-bit bypass templates that span three chips,
each template has two bits that lie in one chip and another two
bits that lie in two other different chips. See Figure 6 (left).

Next, by flipping the latter two bits (in different chips,
Figure 6 (middle)), Intel’s SDDC mechanism will mistakenly
identify the former chip without flips as faulty, architecturally
"correcting" the value of the entire code word to include the
flips corresponding to the first chip from the considered 4-bit
bypass template (Figure 6 (right)). Finally, we empirically
verify this behavior across multiple 4-bit bypass templates
via our logic analyzer (see Appendix B for one example).
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Figure 6: 4-bit Bypass Template (left) and 2-bit Correctable Bypass Template
(right)

Overall, while simultaneously flipping indices from a 4-bit
bypass template results in a Rowhammer attack undetectable
to the machine’s ECC implementation, flipping just two bits
in different chips from a 4-bit bypass template spanning 3
chips results in an attack that is detectable by the ECC, which
is subsequently incorrectly corrected by it. Going forward,
we refer to these as 2-bit correctable bypass templates.

Number of Flippy Cache Lines and Exploitable Templates.
With our analysis of Intel’s ECC implementation in hand,
we now present a breakdown of cache lines within a 1GB
region based on the number of Rowhammer-induced bit flips
in them. To that aim, we hammer with the machine’s ECC
mechanisms disabled, averaging our results across DIMMs
H0–H23. Figure 7 presents a summary of our findings,
showing a considerable number of cache lines exhibiting
more than two Rowhammer-induced bit flips.
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Figure 7: Number of Rowhammer Induced Bit Flips Per Cache Line



Next, we also estimate the average number of 4-bit bypass
templates and 2-bit correctable bypass templates across
DIMMs H0–H23. As can be seen in Table 5, while the
number of 4-bit bypass templates appears to be very limited,
most of the DIMMs tested have several thousand 2-bit
correctable bypass templates in a 1GB region.

DIMM
Tested

Avg. # 4-bit
Templates

Avg. # 2-bit
Templates

DIMM
Tested

Avg. # 4-bit
Templates

Avg. # 2-bit
Templates

H0–H2 0 0.33 H11–H13 0 4958.7
H3–H4 0 1 H14–H16 0.33 4946
H5–H6 0 3095.5 H17–H21 0.2 8549
H7–H8 0 6779 H22 0 8408
H9–H10 0.5 8493 H23 0 4497

Table 5: Number of 4-bit Bypass and 2-bit Correctable Bypass Templates

5.4 Investigating Intel’s Data Scrambling
Until now, we have recovered and analyzed Intel’s ECC
implementation with the data scrambling functionality
disabled. In realistic Rowhammer scenarios, it is necessary to
consider the effects of data scrambling on actual data stored
in memory. Thus, we now proceed to enable data scrambling
and investigate its functionality on our Cascade Lake server.
Observing Data Scrambling. We begin our investigation by
determining whether data scrambling happens before ECC
encoding or after ECC encoding. To that aim, we write a
test program that writes an all zero cache line u0 to a fixed
memory location, observing the scrambled 576-bits data
s0 via the logic analyzer. Using our recovered parity check
matrix, we verified that s0 is not a valid code word, which
implies that data scrambling happens after ECC encoding.
Finally, we observe that the check bits part in s0, which is all
zero after encoding, is also scrambled, which means Intel’s
scrambling mechanism operates on strings of 576 bits.
Predicting Scrambling Values. As outlined in Section 2.3,
memory controllers disrupt long consecutive sequences
of 0s and 1s by XORing pseudorandom patterns to data
writes (and XORing them again during reads). To recover
Intel’s scrambling implementation, we use our program to
write the same all zero data to multiple different memory
locations, across different banks, rows, and cache lines in
each row. Comparing the resultant scrambling strings via
the logic analyzer, we find that our server generates different
scrambling string across banks and cache lines in each row,
while the string for corresponding cache lines across rows in a
bank stays the same. We also observed that scrambling string
generation is not randomized across system boots, or even
machines, appearing to be hard-coded. As our setup contains
16 banks and 128 cache lines per row, this results in a total
of 2048 different scrambling strings which we recover via the
logic analyzer.2 Finally, as Intel’s scrambling implementation
appears to be a deterministic XORing of fixed masks into the
data stream, it (obviously) does not prevent the generation
of data patterns required for Rowhammer attacks.

2This can be found as an artifact in Section 9.

6 Rowhammer Attacks with ECC Enabled

Having recovered the hammering templates required to
bypass ECC checks on Intel architectures, we now construct
Rowhammer attacks with ECC and data scrambling enabled.
Experimental Setup. We mirror the experimental setup
of Section 4, using a machine equipped with an ASRock
EPC621D8A motherboard and an Intel Xeon W-3235
(Cascade Lake) CPU. For memory, we use Hynix Registered
DDR4 ECC memory, part number HMA81GR7CJR8N-XN
TG AD. Next, our motherboard uses BMC controller
firmware revision 1.60, and BIOS version P2.10. For
software, our target machine runs Linux Debian with kernel
version 4.9.0-19-amd64. Finally, unlike in previous sections,
going forward we leave all BIOS and Linux settings in their
default state, yielding a DRAM refresh rate of about 7.8µs,
and ECC and data scrambling both enabled.

6.1 Observing Bit Flips with ECC Enabled
When ECC is enabled, any Rowhammer-induced single bit
flips are likely to be corrected, making it impossible for us to
infer whether a specific index is affected by Rowhammer via
software memory accesses. Tackling this issue, prior work on
DDR3 [11, 39] observed significantly higher access latency
(up to 5 orders of magnitude) to cache lines containing bit
flips, due to synchronous software operations caused by Sys-
tem Management Interrupts (SMI) and Corrected Machine
Check Interrupts (CMCI) [13], which notify the system of
memory errors and attempt to correct them. Tracked under
CVE 2018-18904, we did not observe this interrupt-based
side channel on any of our machines, presumably due to
mitigations present on modern DDR4 systems.
Reliably Observing Bit Flips Under ECC. To investigate
the system’s behavior when encountering a correctable bit
flip, we first templated a DIMM with ECC disabled (see Sec-
tion 4.2), collecting information about the locations of flippy
cache lines. Next, we enabled the system’s ECC functionality
and hammered multiple flippy and non-flippy cache lines,
measuring their access latencies after each hammering round.
See Figure 8. As can be seen, despite our system BIOS default
settings being set to not issue SMI and CMCI interrupts on
individual bit flips, memory accesses to cache lines containing
a correctable bit flip take about x3-4 times longer compared to
normal access latency. Finally, we note that accessing a cache
line may rarely coincide with a refresh operation occurring
in the same bank, causing a spike in access latency that could
be misinterpreted as a false positive. Thus, by hammering
and accessing the tested location multiple times, we are able
to reliably observe correctable bit flips via access latencies.
Investigating the Root Cause of Correction Spikes.
Investigating further why these latency spikes occur, we
observed the system’s behavior while accessing a flippy cache
line via the logic analyzer (see Appendix C for examples).



Figure 8: Access Latencies For Normal and Corrected Cache Lines

Here, we noticed that when an ECC error is detected, the
memory controller issues three additional read requests to
the same location. This behavior resembles the request replay
feature described in Intel and AMD documentation [1, 25],
which is designed to address transient memory bus errors.
After detecting the same error in all three replayed requests,
the controller corrects the error, writing back the verified
data using a different ECC. Finally, we observed that the
memory controller reverts to using the original ECC after a
write operation to the corrected cache line.

6.2 DIMM Templating
Having identified 2-bit correctable bypass templates and
a timing side channel allowing us to reliably observe bit
flips corrected by the machine’s ECC implementation, we
proceed to template the DIMM for locations of bits that can
be exploited using our 2-bit correctable bypass templates.
To that aim, we proceed to test the bits of every 64-byte
codeword individually, using the most effective 1-0-1 data
pattern identified in Section 4.4. Thus, we set all the bits in
the aggressor and victim cache lines to 1, except the (single)
bit being tested in the victim cache line which we set to zero.

Unfortunately, even when the data values in the aggressor
and victim cache lines differ by only a single bit (the bit being
currently tested) the ECC bits corresponding to a victim cache
line sandwiched between two aggressor lines create many un-
intentional effective hammering data patterns. This in turn
increases the likelihood of uncorrectable errors due to flips
in the code’s check bits, typically resulting in system crashes.
ECC Aware Hammering. To minimize hammering the effec-
tive patterns in ECC bits, we use the layout shown in Figure 9.

Z 1A1 CBW

1 0V CB1

Z 1A2 CBW
Figure 9: Hammering Layout for Minimizing ECC Bits Hammering

Here, we begin by filling the victim cache line V (middle)
with 1s (green), except the bit under test which is set to
zero (white). We then use the code’s generator matrix G to
compute the corresponding value CB of the code’s check
bits (orange). Next, we would like to find values Z and W
for the aggressor cache lines (A1 and A2), such that Z|1|W
produces the same check bit values CB as the victim cache
line V. While this results in only 1-1-1 and 0-0-0 hammering

patterns appearing in the check bit values (orange), we would
also like to minimize the amount of bit locations that do not
form a 1-1-1 pattern in the Z and W parts of Figure 9 in order
to prevent these bits from being hammered.

Mathematically, this problem is equivalent to finding two
values Z and W such that A1⊕V have zero-valued check bits,
i.e., that Z|1|W|CB⊕ 1 ···1|0|1 ···1|CB is a valid code word
generated by G. Moreover, we would like Z|1|W|0 to have
as few non-zero bits as possible, minimizing the amount of
effective hammering patterns outside the bit being tested.

To accomplish this task, we utilized the generator matrix
G to search for “light” values of Z and W that satisfy the
above condition. Here, we begin with Z = W = 1, and test
different pairs of Z and W, testing all

(512
i

)
values that have at

most i bits set to 1, before proceeding to i+1. With G’s code
distance being only four, we were able to generate values of
Z and W for all 512 bits in a cache line, containing only 3
non-zero bits. For a bit index j, we refer to the corresponding
values Z j and W j as its testing values.
Blacklisting Weak Cache Lines. Having successfully gen-
erated testing values for all bits in a victim cache line, we are
still left with 0-0-0 and 1-1-1 hammering patterns in the check
bits part of the aggressor cache lines (A1 and A2) and the vic-
tim V. Observing Table 3, such patterns (especially the 0-0-0
pattern) alone are sufficient to cause system crashes. In order
to mitigate this, we avoid hammering cache lines whose ECC
bits are vulnerable to such patterns. Thus, before testing any
cache lines, we must first test the flipping characteristic of its
ECC bits under the 0-0-0 and 1-1-1 patterns. In case a cache
line is found to be susceptible to such flips, we exclude it from
the hammering list. We refer to this process as blacklisting.
Performance Degradation During Blacklisting. Unfortu-
nately, the blacklisting phase can itself cause system crashes
when testing for cache lines containing bits susceptible to
the 0-0-0 and 1-1-1 patterns, resulting in crashes in case two
such bits are present in a 512-bit cache line. To address this,
instead of starting the blacklisting phase with our optimized
pattern P3, we hammer in stages of increasing effectiveness.

Figure 10: Rowhammer Effectiveness as a Function of Row Activations.
Notice the Bit-by-Bit Increase in Cache Line Flippiness.

Figure 10 demonstrates this effect, where hammering
effectiveness is directly proportional to the amount of row
activations done within a refresh period. This allows us to
test bits susceptible to 0-0-0 and 1-1-1 patterns one at a
time, with any flips being corrected by the machine’s ECC
mechanism and the affected cache line added to the blacklist.



6.3 Hammering For ECC Bypass
After identifying the 2-bit bypass tuples, discovering a timing
side channel to reliably observe individual bit flips corrected
by the machine’s ECC, as well as implementing bit-testing
data values and blacklisting to prevent crashes, in this section
we now perform end-to-end Rowhammer attacks with the
machine’s ECC mechanisms fully enabled. To that aim, we
begin by allocating 2MB huge pages, which we will profile
for containing Rowhammer-induced bit flips. For each row
under test, we first perform the blacklisting phase, aiming
to eliminate cache lines whose ECC bits are vulnerable to
unwanted patterns (e.g., 0-0-0). After blacklisting, we sys-
tematically test each 2-bit bypass template from Section 4.4
for every non-blacklisted cache line inside the row before
proceeding to the next 8KB row in the huge page.
Evaluation. We evaluate our end-to-end attack under both
idling conditions and while executing the 500.perlbench_r
SPEC2017 [7] benchmark in parallel to our hammering code.
During each evaluation scenario we performed 10 hammering
experiments starting from randomly selected rows. Here,
we measured the time taken by each of our attack phases,
end-to-end hammering time, as well as the number of rows
needed to be hammered til the first architectural bit flip is
observed. Table 6 summarizes our findings. As can be seen,
for an idle system, obtaining a Rowhammer-induced bit flip
can be done within about 2.5 hours on average, despite the
machine’s ECC mechanisms being fully enabled. Moreover,
our hammering technique did not result in any crashes or
machine check exceptions, with the machine being fully
responsive during our hammering process. Next, hammering
in parallel to running the SPEC2017 benchmark, the time to
obtain a bit flip increases to an average of 10 hours, with five
out of ten experiments resulting in system crashes. Finally, we
note that in both scenarios our attack did generate correctable
errors (in addition to the architectural bit flip), which were
reported and logged by both IPMI and OS kernel EDAC.

Cond. Blcklst Time
Per Row

# Blcklsted
CL Per Row

Time to Test
a Template

Total Row
RH Time

# Rows Til
Bit Flip

Total
Time

Idle 20m 23.8 8.4s 15.1m 4.1 2.5h
SPEC 20m 27.9 8.4s 15.1m 26.8 10.4h

Table 6: End-to-end statistics for obtaining visible bit flips via Rowhammer.
The numbers reported are averages across all ten runs.

6.4 Rowhammer Attacks on RSA Signatures
Having established the feasibility of Rowhammer-induced bit
flips on Intel server platforms with ECC mechanisms enabled,
we now demonstrate end-to-end Rowhammer exploits on RSA
signatures, reproducing the public key flipping attack of [11].
RSA Overview. RSA is a public key cryptographic algorithm
that relies on the hardness of factoring to ensure security [55].
We focus here on its digital signature variant, which allows
one to verify the authenticity and integrity of a message. RSA

signatures work by generating two primes p,q of roughly
equally size and then multiplying them together to form a
composite modulus n = pq. This modulus, along with an
exponent e (typically 3 or 65537) then comprises the public
key (e,n) that is used to verify signatures. The private key
d is computed such that ed (mod φ(n))≡ 1. Signatures are
computed as σ=md (mod n), and verified with the public key
by checking that m=σe (mod n). As factoring is considered
to be a hard problem for sufficiently large (and properly gen-
erated) n, it should be hard to recover the private key if only
given the public key, preventing an attacker from forging sig-
natures without obtaining the private key. However, as noted
in [54], even a handful of Rowhammer-induced bit flips can be
used by attackers for RSA signature forgery. At a high level,
once the location of flippy bits has been identified, the attacker
performs a memory massaging step, which is a series of mem-
ory deallocations designed to trick the allocator into placing
a copy of the public key on the flippy bits. Next, by flipping
bits in the RSA modulus via Rowhammer, we can turn it into
a product of multiple smaller primes, making it substantially
easier to factor. Next, by factoring the modulus and thus re-
covering a corresponding private key, we enable a variety of
attacks, such as those against OpenSSH discussed in [54].
RSA Rowhammering. We now discuss how we can
utilize our attack to gain such advantageous bit flips in an
RSA modulus to enable practical factoring. Using standard
OpenSSL 3.2.2 functionality, we generate 1024-bit RSA keys
and utilize a program that acts as a signature verification
oracle, taking in signatures via a socket to verify using the
public key. By flipping bits in this public verification key
via Rowhammer on our server platform, our goal is to create
a new modulus n′ that we can easily factor to recover the
corresponding private key d′ (using similar methodology to
[11, 54]). With this, we can then generate signatures that the
oracle will correctly verify using the modified keypair.

We run our factoring code on a system with two Intel Xeon
Platinum 8352Y CPUs and 1.5TB of RAM3, and use our
standard test platform to run the oracle. After executing our
bit flipping attack, we recover the modified public key, which
we then attempt to factor. We use a Sage implementation of
ECM for factoring n′ [63]. We note that the location of our
bit flips within the key is crucial to the (timely) success of our
attack, as these locations dictate how the modulus is modified
and thus how easy it is to factor. For example, we are able
to factor certain 1024 bit moduli in under 100 seconds, while
others took at most 55 minutes.

7 Countermeasures and Future Work

Our attack relies on multiple properties of the target machine
for its success, leaving many avenues for countermeasures.

3Though our code is single-threaded, and we only parallelize different
trials.



7.1 Hardware Mitigations

Existing hardware mitigations for Rowhammer only protect
the memory system from certain Rowhammer access patterns
and cannot provide rigorous security guarantees. As a result,
past works have repeatedly demonstrated new access patterns
that overcome existing hardware defenses [14, 18, 27, 32, 36].

In response, researchers have proposed systematic
hardware mechanisms for protecting against Rowham-
mer [5, 8, 31, 40, 48, 50, 53, 57, 58, 67, 68, 69]. New
designs [5, 31, 40, 50, 53, 58] are proposed for counter-based
or probabilistic in-DRAM trackers with low performance
overhead, guaranteeing Rowhammer resilience even in the
case of low activation tolerance of DRAM cells. These tracker
designs can be mathematically proven to provide Rowhammer
protection across different row activation count tolerances.
Randomized row swapping [57, 68] or shuffling [67] protects
DRAM rows from Rowhammer bit flips by breaking temporal
aggressor and victim row adjacency in a randomized fashion.
BreakHammer [8] and BlockHammer [69] attempt to improve
these defenses by slowing down a potential attacker when de-
tecting activity consistent with Rowhammer attacks. This slow
down potentially prevents Rowhammer attacks without the
need to identify the row that the attacker targets. DDR5 has in-
troduced a new command for Rowhammer protection, referred
to as refresh management (RFM), with several works [33, 46]
exploring measures for Rowhammer protection using RFM.

An alternative to monitoring behaviors that are consistent
with an attack is to improve the error detection and correction
code and make it more robust. CSI:Rowhammer [30] replaces
the ECC code with a cryptographic hash. The approach
promises correction of every single bit error and probabilistic
detection of any number of bit flips.

7.2 Software Mitigations

A common limitation of all hardware-based approaches is
that these cannot be applied to already deployed systems,
requiring hardware redesigns. On the other hand, existing
systems can be protected with software-based Rowhammer
mitigations [2, 3, 6, 37, 44, 62, 70]. ANVIL [2] and
SoftTRR [70] take the approach of detecting potential attack
memory access patterns and refreshing victim memory
preventatively. ANVIL uses kernel performance counters
to monitor cache miss rate and track possible Rowhammer
aggressor rows, because Rowhammer attacks typically incur
frequent cache misses. However, it suffers from false positives
and attack escape by carefully limiting hammering rate. Soft-
TRR focuses on protecting kernel page tables from malicious
bit flips, which takes less performance penalty at the cost of
weaker security guarantees. Another common Rowhammer
mitigation approach is memory isolation based on security
domains [3, 6, 37, 44, 62]. Various proposals have explored
memory isolation at different fine-grain levels or focusing

on different applications: between kernel memory and user
space memory [6], between virtual machines [44], between
applications [3, 62], or between every DRAM row [37].

7.3 Future Work
Our attack is specific to the hardware we used, including Intel
machines and Hynix DIMMs. We leave the task of extending
and generalizing the attack to future work. One promising
candidate for extension is investigating other memory vendors
(Samsung and Micron), who likely use completely different
approaches for TRR, thereby necessitating new approaches
for overcoming the defense. Similarly, very little research has
been done on attacking DDR5 memory. Another direction is
investigating other CPU models or vendors, such as AMD or
Apple. In particular, we expect the ECC algorithms and the
memory scrambling functions to vary significantly between
vendors. Expanding the scope of the investigation will not
only improve our understanding of the scope of the issue,
but also allow for developing more generic techniques for
carrying out the necessary steps for developing attacks.

Finally, modern high-availability servers are equipped
with subsystems for reliability, availability, and serviceability
(RAS). Our Rowhammer attack generates correctable errors,
which are reported and logged by both the motherboard
management system (IPMI) and OS kernel EDAC. Thus, our
attack is detectable if system logs are being monitored by
system administrators. While we leave the task of creating
an undetectable Rowhammer attack against server hardware
to future work, as a stop gap measure we note that a higher
ECC error logging level and lower bit flip reporting threshold
will increase the probability of attack detection until a funda-
mental solution to Rowhammer is developed and deployed.
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8 Ethics Considerations

We own all devices used in our experiments, and these devices
are free of any sensitive user data or personal information.
These devices are only accessible to lab members, and are not
exposed to unauthorized users. All keys and cryptographic
secrets were generated solely for our experiments.

9 Open science

We list all artifacts supporting this paper below. We have
published all of them at https://doi.org/10.5281/
zenodo.15579424.
1. Source code, instructions, scripts, and/or files for TRR

profiling and testing Rowhammer patterns using an FPGA
memory controller, testing Rowhammer on a test platform
and the tool that parses and modifies a UEFI image file
(cf. Section 4)

2. Source code and instructions for testing Intel’s ECC
implementation, data correction capabilities, and data
scrambling, and the ECC generator matrix and parity
check matrix for Intel’s Skylake and Cascade Lake
platforms (cf. Section 5)

3. Source code, instructions, and testing scripts for DDR4
Rowhammer with ECC and data scrambling enabled and
for RSA (cf. Section 6)
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A BIOS Modification Details

We now describe our BIOS modification process and tool in
more detail.
Visualizing Hidden Settings. First, to introspect any hidden
settings, we have to understand the UEFI image format
itself. On Intel platforms, this image starts with an Intel
Flash Descriptor (IFD) followed by one or more partitions,
called firmware volumes [38]. Some of these volumes are
formatted with the Firmware File System (FFS) which stores
a hierarchy of actual drivers and executables to perform plat-
form initialization during boot. Furthermore, some of these
executables contain Human Interface Infrastructure (HII)
packages containing strings, images, but more importantly
Internal Form Representation (IFR) [65], which not only
describes the user interface that the UEFI setup should render
on screen, but also what options are available for each setting,
and how to correctly adjust the variables in the underlying
non-volatile RAM (NVRAM) storage.

We implemented a number of parsers that can locate
these IFR descriptions and visualize these in a terminal
user interface to easily introspect what settings are available.
Using our tool, we observe that the SocketSetup executable in
the UEFI images for Skylake and Cascade Lake motherboards
often contains a Memory Dfx Configuration menu with an ECC
Checking setting that allows us to disable the ECC checking
mechanism. We conjecture that this menu is actually intended
for debugging purposes, as Dfx indicates design for debug,
test, manufacturing and/or validation [24]. Similarly, we find
that the SocketSetup executable also contains a Memory Con-
figuration menu with the Data Scrambling for DDR4 setting.
Adjusting the NVRAM. In addition to these user interfaces,
we also have to persist any of the changed settings to the
underlying NVRAM storage, responsible for holding the
UEFI settings, on the flash chip. Typically, these settings are
either stored in their own firmware volume or a file in one
of the firmware file systems. While there are several UEFI
implementations available, each with their own NVRAM
storage format, we note that most platforms implement AMI
Aptio’s NVAR format, as AMI Aptio is the most prevalent
for desktop and server motherboards [59]. Thus, we have also
implemented a parser that allows us to parse AMI’s NVAR
format to read the current settings and a serializer to modify
them. This results in a UEFI image file, which we must flash
to the board’s flash chip.

Figure 11: The setup of the Tigard flash programmer hooked up to the flash
chip (left). The location of the socket containing the BIOS flash chip on the
ASRock Rack EPC621D8A motherboard (right).

Flashing the UEFI Image. While most motherboards allow
users to update the UEFI image via the BIOS update process,
we have discovered that motherboards typically refuse to flash
images edited via our tools, due to failing checksum and signa-
ture checks, originally intended to prevent users from flashing
corrupted images. Thus, rather than reverse engineering these
safety mechanisms, we have instead opted for simpler meth-
ods to flash the board’s flash chip, bypassing them altogether.

First, many ASRock Rack motherboards typically have a
socketed flash chip, allowing end users to directly swap these
chips in case of a flashing failure or version upgrade. For such
boards, we have successfully used external flash program-
mers, such as the Tigard multiprotocol board [22], to directly
flash these chips with our UEFI software, subsequently
installing them into the board’s socket. See Figure 11.

Moreover, high-end gaming motherboards supporting
Xeon processors (such as Asus ROG Dominus Extreme
or the EVGA SR-3 dark) often allow users to update the
system’s BIOS without the CPU present, aiming to resolve
compatibility issues across Intel’s CPU ecosystem. This
process involves connecting a drive containing the required
UEFI image into a dedicated USB port, followed by pressing
a specific button sequence on the motherboard with the
CPU removed. Empirically attempting this process we
have discovered that both Asus and EVGA seem to skip all
checksum and signature checks, directly flashing the image
into the system’s flash chip.

B 2-bit Correctable Bypass Template Example

We now give an example of obtaining Rowhammer bit flips
using a 2-bit correctable bypass template with logic analyzer
traces. We choose the 4-bit bypass template: bits 76, 116,
132, 180 as an example. The four bits in this template lie
in chips 3, 13, 1, 13 (respectively). Thus, bit 76 and bit 132
form a 2-bit correctable bypass template. The experiment has
the following steps.

We first write to the target cache line with all bits set to
1 except for bits 76 and 132 (indicated with a red triangle),
which are set to 0 (Figure 12).

Next, we hammer the cache line to flip both bits (76



Figure 12: Logic Analyzer Trace of Writing Unflipped Data into Cache Line

and 132) from 0 to 1. Figure 13 presents the logic analyzer
trace of reading flipped data from memory. The half bytes
containing bits 76 and 132 turns from E to F with all other
bytes unchanged, indicating only bits 76 and 132 flipped.

Figure 13: Logic Analyzer Trace of Reading Flipped Data from Cache Line

Next, Figure 14 presents the value our Rowhammer code
observes as returned from the machine’s memory. Comparing
the cache line data between Figure 12 and Figure 14, fours bits
are different: bits 76 and 132, which are flipped from 0 to 1 by
Rowhammer, and bits 116 and 180 (also indicated with a red
triangle), which are "flipped" from 1 to 0 by ECC correction.

Figure 14: Cache Line Data Seen by Rowhammer Attack Code

Finally, we confirm that these bit flips are permanent by
writing back the cache line with data read in the last step and
observe that the bit flips still exist, as shown in Figure 15.

Figure 15: Logic Analyzer Trace of Writing Flipped Data into Cache Line

C Logic Analyzer Output when Accessing
Flippy Cache Lines

Figure 16: Correction Replay Requests Pattern

Figure 17: Crash Replay Requests Pattern
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